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Abstract Natural systems are heterogeneous and they contain noise due to randem inputs, irreguiar varying
coeflicients and fluctuations in boundary conditions. In this paper. we model the behaviour of narural
systers using stochastic differential equations, present a parameter estimation procedure for such models in
a general setting, and extend it to simple groundwater models. The applications © groundwater models are

within the context of one dimensional sclute transport problem to cstimate parameters for two governing
equations, one consisting of a single parameter and other of two parameters. The results of this inverse
methodology are reliable in the presence of noise, However, the investigation of solute transport parameter
estimates shows an inverse relationship (0 the noize level The main adv vantage of the estimation
methodology presented here is its direct dependence on field observations of state variables of natural

systems in the presence of uncertainty.
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I INTRODUCTION

We model the behaviour of natural systems such
as groundwater fiow and solute transport in porous
media through differential equations based on
conservation laws. In the process of developing
the differential  equations, we introduce the
parameters, which we consider attributes or

propertics of the system. In the case of

groundwater flow, for cxample, the parameters
such as hydraulic conductivity, transmissivity and
porosity are constant  within  the differential
cquation. and it is oflen necessary o assign
numerical  values (o these parameters. These
values of the parameters are obtained from
taboralory  experiments  and/or  field  scale
experiments. However, these values may not
represent the often complex palterns across a large
geographic arca, hence fimiling the effectiveness
of the model. In addition, such Held scale
experiments can be expensive, Often we are
interested in modelling for quantities such as the
depth of watertable and solute concentration. This
is  because they are direcly relevant to
environmental decision making, and we measure
these  variables regularly and the measuring
technigues tend Lo be cheaper. Further we can

continucusly  monitor  these  decision  (output)
variables in many siwations. Therefore 1L is
reasonable (o assume that these observations of
the output variables represent current status of the
system. If the dynamics of the system can reliably
be modeled by a relevant differential equation, we
can expect the paramelers estimated based on the
cbservations  may give us  more  reliable
representative values than those obtained from
laboratory tests and literature. However, such
observations  often  contain  noise  from  two
differeat sources: experimental errors and noisy
system dynamics. Noise in lhc system dynamics
may be due to heterogeneity of the media, random
nalure of inputs such as rainfall and variuble
boundary conditions to name a few factors. The
question ol estimating the parameters from the
chservations naturally invelves the models that
represent the system noise as well. In this paper.
we aim o illustrate @ parameter eslimation
precedure for such models containing noise. We
present models in a general setting so that the
procedure can be used for groundwater models.
Then we apply parameter cstimation theory and
procedures to the sclute (ransport in saturated
porous media in the presence of noise.
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2. SYSTEM DYNAMICS WITH NOISE

Let us consider a differental cquation of the form,
v

—=f{H v} 3
ci

where v is the dependent variable {outputy that 1s
phserved, 7 is time and £ is & parameter  upon
which the characteristics of the model depends.
Suppose  we  can include  the noise (7))
contained in dv /i as an additive component o
(11 For simplicity we will assume that & depends
only on Ume. In many engineering and natural
systerns, this noise is irregular, continuwous and
independent of each other, and white noise has
been  considered as  a  valid  approximation
[hksendal, 1995). Therefore, we can express (1)
as

dv .o )
—zez= UG ) {
ot

]
—

and mubtiplying by dr we get

Lk

)

Once we consider white noise as a model for the
noise lerm, v becomes a stochastic process having
many realisations or paths. A set of observations
of v can be considered as a realisaton of v
Conside ring that the noise represents deviations
away Emm the deterministic rate, the expected
value of Z(r) over all realisations 1s zero; E(ryis

dy= F18 v rydr+ E(Ddr {

an independent  stochastic  process; the  joint
probabifity distribution of () s time-invariant;
and E{ryhas o be continuous lhough irregular,
The only stochastic process that can meet all these
reguirements is the Wiener process (B(1)) based on
observations of the Brownian motion {@ksendal,
10937, It can be shown that,

dB{y=&{t)dr (4)

taking the convergence in the mean square sense.

In {4). «B(r) are increments of the standard
Wiener process which are normally distributed
with o unit variance, {for a detailed discussion
refer o Kulasinl and Verwoerd, 20011,

Substituting i1 {3) we have
v o=@ vordi By, 0sesT. (5
This is a stochastic differential equation giving the
drift term (08, v, 0) ) and diffusive term {dB{D ).

Kutoyants [ 1984, for example, gives the

Hkelihood function L{#) to estimate € given the
observation for v under cortain conditions:

W;
Taking natural Jogarithm of both sides
likelthood is given by

T
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By maximising {&) with respect (0 & we obtain,

o T
M ” {FUE, v dvis)
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(81 will give the maximum likelihood parameter
(8 for @, given the values of y. We will tllustrate

the use of (8) by mking an example,

2.1 An Example

Suppose that the dynamics of a sysiem could be

expressed by,

dX it p .

———iml::@X(ng(r); Xin=t Gzl (93
elt

where X (1) s the process under observation, € 1s

a parameler o be dewrmined from  the
ohservations, and £(r) is the noise component
assumed to be white, Following the arguments
mentioned in the Previous SCCLON, we Can express
the process X(f) In terms of a stochastic

differential:

dX ($y=8 X (e +ddBiry {(1h

Foilowing the definilion of Ito miegral [Dksendal,
19951 we can explicitly solve (107 and the solution
can be expressed in terms of Wiener process.
B(1)

Xi{y=X {0 expl B0y exp(iB - 23 (1h

where B(r)is the standard Wicner process. The
solution of (11} consists of a set of realisations of
Xir) and as an example. a realisation of X)) is
given in Figure 1 for =15 Let us assume that
we observe the realisation of X{t) depicted in
Figure | and we seek (o estimate & given
X411 and corresponding time values,
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Figure 1. A realisation of (11} for 8=15.

In this case, comparing 10 (5)
Fl. =0 X
and {8) can be expressed as

(&)
dg

| s
= [xtmax - [0 xw x war
0 0
] ]
= J‘X(r)d)((r}— 0 X i,
0 o
To maximise the log likelihood,
G
g

0.

.
f X (2)dX (1)
Therefore, @ :_QT__*___W, . (1)

J. X 3
{}

From the given ohservations (Figure 1) we express

8 as

M

ZX(:,-) AX (1)
3 .. =l
Y,
PRSI
=1

The estimated value of 8(63} for the given

(13)

realisation is 147849, Similarly, to investigate the
robusiness of the procedure, we compute 6 [rom
30 ditferent realisations of X(i). Calculated from
{1y with @ = 1.5, the mean of & s | 48135 with
a standard deviation of 0.586255. This shows that
i we sample the X(r) process from {11y a
reasonable number of times. the mean valae of @
is very close to 1.5,

it would be interesting to see what happens when
the standard Wiener increment term { dB(£)) in (5)

. e . . k)
is modified by an amplitude (o J;

dv=f168, v.0dr+c7 dB(1) . (14

Equation (12) is used 1o caleulate &, and Table |

shows the mean and the standard deviations of &
based on 34 distinet realisations of Xz} from (1 1)
with &= 1.5 ltis evident that an amplitude of 1.0
or less, and slightly above L0 would produce
reliable estimates from this procedure.

Table 1. Mean and standard deviations of
parameter estimates.

, &

o Mean Std. Deviation
0.01 147319 0.117916
010 1.55374 0.234585
0.25 1.39394 0.385624
(3.50 1.52886 (3.426577
[.GO 148135 0.586255
[.50 L.76876 1424700

3. APPLICATION IN GROUNDWATER
MODELS

In this section, the ubove described general
parameter estimation procedure is applied in the
context of solute transport in saturated porous
media in the presence of noise. Unny [1989]
presented  the  basis for this application by
describing groundwater system in the form of
slochastic pagtial differential equations and then
estimating paramelers.

3.1 Estimation Related to One Parameter

Case
The  stochastic  one-dimensional  advective
transport equation can be expressed as,
ac aC ) }
=y (””““ F& (T (13}

737"_ L dx )

where v =average linear velovity, m/day,

¢ = solute concentration. mg/|,
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and &, 41 s described by a zero-mean stochastic
process. We multiply (15) by dr throughout and as
in (14, formally replace S(x.ndr by o~ c!B( t)
(see Unny (1989) for the derivation). Now, we can
obtain the stochastic partial differential equation
as follows,

o dC .

A =ml'_‘[ i+ dBn) (16}
v

Suppose  we  have  observations  of  solute
concentration, £, at M independent space
coordinates along c-axis, where 1 £ 1 £ M
different time mtuxdﬁs. f{where 7 < ¢ < 7). In
other words we have M number of C[
observations for cach tme step. Hence, altogether,
there are ({T+ [ y*M) number of €, observations.
We use these observations o estimate the
parameter &, which, in this case v, {or hydraulic
conductivity, if hydraulic gradient and porasity are
known), of all possible parameter valucs using
maximum hikelihood approach. As we explained
ahoave, we can write (16) in the form of (14),

, OC
where j"((ﬂ.(_,‘.f):wv{[iw .
| ox

The likelihood expression for the estimation of

parameter 6 can be given by

|

L6} = Hp\j f6.C r)(zc(;}—~j; (6.C ner

Lo

(n

The estimaic £ can be obtained by maximising

L(8}  therefore,

£)ii—(?—?i-—-(i. {18}
)
W 8 )=1Inl{8) (19

taking the natural tog on both sides of the equation
(i

T T
i(f))zj fj(H.(,‘.z}dC{r}——i—j_f’:_{ﬁ.C,r}dr. (200

0

The parameter s estimated as the solution to the
equation

T )

¢ .

— OGO {1
j]-()() f e

i -
~J_f‘( a,cC, f}—,-d—_f(& Crode=10, (21
] o

I we observe M independent sample paths, the
likelihood-function becomes the product of the
likelthood functions for M individual sample
paths,

ME) =16, Chlig. Cy)..... ] Lig, Cy) (2D

Taking the natural log on both sides of the
equation (22) we have the log-likelihood,

We)y=018. Cl+lid, G+ (8. Cyh (23)

Therefore,  the log likelihood function can be
expressed as

M7
[8) = Ej_fm, Coot)dCi

=

AT

waff (6,C, . tidr . (24)

and the parameter estimate & is obtained as the
solutton wr maximum likelihood

M T

Zjaf(g C i ."Ci(.f)
1]

“zjf(ec* af(é;; dr=0.(25)

i=b

Let us assume that the drift rerm in (34, 7.0 @),
depends linearly on its parameters & | then we can
Cxpress it as

O, Cy=a,(Cony+Ga (Tt (20)
The log-likelihood function from equation (24) 15

M T
(o= j{u,(} (C..)+0.a, (T, (1)
a

=1

szj‘{a( EGaCanFdl (2T

EY

The estimate £ is obiained as a solution to the
equation

M T

ZJ‘W‘{( HAC; (U

=l

Z’j{a[ (Crov+8a( 1R (€

=ty

"ok =0.(28)

Hence the estimate of 6(8)1s given by
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a7 M7
ZJ{CI] (C, 00 C (1) - ZJ.{Q{-J(C,-,f)}{(il(ci,!)}d!
=l =g
M7 1
EJ{CJE(_C,-~I)FII
&=l
{29}
When we compare (16) and (26), we have
ag(Cr=0 i = -—(—Q—C—\! S
Loy )
Therefore, the estimate of v is given by,
MoT
J, EW(/Q(?)
= oy /
b= '";I “; - (30)
. aCc |
-H(C) l ot
= H oo Ji |

3.2 Estimation Related to Two Parameter Cage

We can use the same theoretical basis 1o estimate
two parameter space problems. As an example, let
us  consider @ one-dimensional  stochastic
advection-dispersion equation, which is given by

IC ICY

%:DL(‘) I SV L 31
ot (a_!;' ’ 9){

where [, is the longitudinal  hydrodynamic

. i g -1
dispersion coefficient, m7day, Two parameters to
be estimated are 2, and v . (26) can be written

in the following form:
HC @y =g (O + 8 (C, 0+ By (1), (32}

inastmilar way to the one parameter problem, we
can compare (32) and the drift term of (31):

2
ag L0, ty=00 (,z]((f!-,.r):[a ? :
L dr*
{,11({7,'{‘{): _(ijﬁ_ i 'HE :D[ 4, =V
\r}/\' i ) -

The log-likelihood function from equation (21) is
a7
18, .6,) = Zj lag (C, 13+ B,a,(C, 1)

=E

+8a, (O ‘!j}d(.‘{‘(f}-

M1

i {ce (L6 (C e+ Bya, (1 2dr
5 ) / 154 i R !

=l g

1989

Differentiating (33} with respect to 8, and &,

respectively  we  get the  following  two
simulizneous equations:
Mo
EJ{UI(C";'-")lrd(?i“-)‘
=1 g
M
ZJ{GU{Q!f_}+95ul(c_:;..m+(;1al({'_r_)}
=l
{aC ldr =0
(34
M f[
{a54C, MC (1) -
i=l ;[
M7
Zf{(qﬂ(f,-.!)%—t‘),s‘q (Cootr @yas (.00
=i

{a;_(C,—.IJ}dI = ()
Now we obtain the values for ¢ and ¢, as the

solutions to these two equations.

3.3 Investigation of the Methods

We use the above mentioned method Lo estimate
parameters in (30) and (34) by using a noisy

dataset. The one dimensional solute transport
dataset was generated by using (15) for one

parameter case and (31) for the two parameter
case. First. data was generated by using the
deterministic solutions for each case and then
noise was added randomly o each deterministic’
concentration  value o generate a  siochastic
dataset. As an example, in the case of @ maximum
of #3% introduced randomness, the noise
component was generated by a random function
which gives a maximum of 3% of deterministic
concentration and another randomness function
selects + or - operation. The spatial domain of the
solution is 10m (0 v <10 ).

4. RESULTS

2.1

The example in section shows that the
parameter estimation methodology described in
this paper produces retiable estimates for a noisy
dynamic system. The expected values of the
estimates are closer to the actual parameters at low
noise levels. As the percentage of noise

mcreased by changing the o?, the difference

18

between actual and estimated paramelers becomes
larger. However, it is interesting o see that the
mean value shows o close correlation 1o the actual
value though the standard deviation increases with
the noise {Tabie 1).



We present only a sample of resuits for the
stimulation study of solute transport. Figure 2
shows the estimated average linear velocity, v,
{(1.3), that was used to generate the deterministic
solution, against the actual parameter value for one

parameler case. Figure 3 shows the comparison of

the longitudinal dispersion coefficient, D, in the
two parameter estimation.
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Figure 2. Actual and estimated velocity for
different noise levels for one-parameter case.
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Figure 3. Actual and estimated longitudinal
dispersion coeflicient (D} for different noise
levels m two parameter case.
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Ag seen in Flgure 2 and Figure 3. the deviations of
the estimated parameters from the corresponding
actual values increase at first and then begin to
flatten as the noise level increases. For example,
the onset of flattening 1s 3% in Figure 2 whereas it
i§ 2% in the Figure 3

-

5. CONCLUSION

In this paper we have shown a straightforward
procedure to estimate parameters of stochastic
differentinl equations, which model the dynamics
af systems containing noise. A sample of results
has been discussed in two different cases to show
that the likelihoed functions give reasonable
results even  with significant levels of noise
contained in the data. This procedure can be
extended (o cases where the amplitude of noise is
non-linear, but it is heyond the scope of this paper,
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